ISRO

Previous Year Paper Refrigeration and Air Conditioning 2014

The condition of stable equilibrium for a floating body is : 1. (a)metacentre coincides with centre of gravity (b)metacentre is below centre of gravity (c)metacentre is above centre of gravity (d)centre of buoyancy is above centre of gravity 2. The thickness of turbulent boundary layer at a distance x from the leading edge over a flat plate varies as (a) x ^{0.8} (b) $x^{0.5}$ (c) $x^{0.2}$ $(d)x^{0.6}$ The diameters of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Velocity 3. of water flowing through the pipe at section 1 is 5 m/s. velocity at section 2 in m/s and discharge in cmm is (a) 2.2 & 2.4 (b) 2.7 & 2.8 (c) 2.1 & 2.4 (d) 2.4 & 2.6 The velocity distribution for flow over a flat plate is given $u = \frac{3}{2}y - y^2$ in which u is the 4. velocity in m/s at a distance y meter above the plate. Shear stress at y =0.15m is (Take μ for fluid =8.5 poise) (c)0.3835 Pa (d) 0.3845 Pa (b) 0.3815 Pa (a) 0.3825 Pa A gas weighs 16 N/m³ at 288 K and at an adiabatic pressure of 25 N/cm². Its gas constant 5. is (b) 544 J/kg K (c) 553 J/kg K (a) 532 J/kg K (d) 523 J/kg K A pipe line AB of diameter 30 cm and of length 400 m carries water at the rate of 50 6. liters/sec. The flow takes place from A to B where point B is 30 meters above A. Pressure at B is 2 ksc. Pressure at A is (Take f=0.008) (a) 5.2 ksc (b) 5.3 ksc (c) 5.0 ksc (d) 5.1 ksc A nozzle is fitted at the end of a pipe of length 300m and of diameter 10 cm for 7. transmitting water. What is the diameter of the nozzle considering maximum transmission of power through the nozzle (f=0.009)(a) 2.6 cm (b) 2.5 cm (c) 2.4 cm (d) 2.7 cm A turbine develops 500 kW under a head of 100 meters at 200 RPM. Its normal speed and 8. power under a head of 81 meters (a) 184 RPM and 375 kW (b) 180 RPM and 365 kW (c) 184 **RPM** and 370 kW (d) 180 RPM and 361 kW 9. Number of degrees of freedom in a Ball and socket joint : (a) 1 (b) 2 (c) 3 (d) 0

INDIAN SPACE RESEARCH ORGANISATION

1 of 9

SET - A

10.	Two inelastic sphere respectively in the sar (a) 500 N m	es of masses 10 kg eac ne direction. The loss ir (b) 0	ch move with velocitie h kinetic energy when th (c) 250 N m	es of 15m/s and 5m/s ey collide (d) 1000 N m
11.	In order to have maxi (a) equal to the jet spe (c) equal to twice the	mum power from a Pelt eed jet speed	on turbine, the bucket sp (b) equal to half of the (d) independent of the	peed must be e jet speed e jet speed
12.	The alloying element (a) Nickel	mainly used to improve (b) Vanadium	the endurance strength (c) Molybdenum	of steel materials is (d) Tungsten
13.	The percentage impro the driving pulley is coefficient of 0.3 is	ovement in power capace increased from 150° to	tity of a flat belt drive, v o 210° by an idler arra	when the wrap angle at ngement for a friction
	(a) 25.21	(b) 33.92	(c) 40.17	(d) 67.85
14.	In an interchangeab size $25.000 \pm 0.03 \text{ mm}$. (a) 40	le assembly, shaft of Maximum interference (b) 30	size 25.000 ^{+0.0} 4 mm. in microns in the assem (c) 10	mates with a hole of bly is (d) 20
15.	A column has a red slenderness ratio of ti (a) 200	ctangular cross section he column is close to (b) 346	of 10 x 20 mm and (c) 477	a length of 1m. The (d) 1000
16.	A thin cylinder of in pressure of 5 MPa. 7 (a) 100	nner radius 500mm and The average hoop stress (b) 250	l thickness 10mm is s in MPa is (c) 500	ubjected to an internal (d) 1000
17.	A circular disk of u flywheel. If it rotates (a) 395	uniform thickness 20mr at 600 rpm, kinetic ene (b)790	n, radius 200mm and r rgy of flywheel in Joule (c)1580	mass 20 kg is used as is (d)3160
18.	A vibration system of with a damping coef (a) 0.15	consists of a mass of 17 ficient of 7 N cm ⁻¹ sec. (b) 0.25	75 kg, a spring stiffnessDamping factor of the s(c) 0.2	700 N/cm and damper ystem is (d) 0.1
19.	Two cutting tools as are Carbide tool : V m/min and T is tool speed in m/min exce	re being compared for a VT ^{1.6} =3000 ; HSS tool life in min. The carbide	a machining operation. : VT ^{0.6} =200, where V e tool will provide highe	The tool life equations is the cutting speed in er tool life if the cutting
	(a) 39.4	(b) 15	(c) 60	(d) 49.3

INDIAN SPACE RESEARCH ORGANISATION

2 of 9

(a) smaller

(c) bigger

SET - A

9

21.	Two c the pl diame 1440 J	crossed helical gears are ane of rotation 80mm ter in the plane of rota RPM, then output speed	used and h tion 12 in RP	for speed re elix angle 20mm and M is	ductio 30 de helix	on. Gear A has g; Gear B . G angle 22.5 deg	pitch circle d ear A has p ; If the inpu	iameter in itch circle it speed is
	(a) 12	00 (b) 87	5		(c) 90	0	(d) 700	
22.	The m (a) del (c) dri	noisture in a refrigerant humidifiers ers	is remo	oved by :	(b) sat (d) exj	fety relief valve pansion valve	\wedge	
23.	In an heat the is:	arc welding process, the ransfer efficiency is 0.8	e volta 5 and	ge and curre welding spe	ent are	e 25 V and 300 8mm/sec. the r	A respective net heat input	ly. The arc (in J/mm)
	(a) 64	(b) 79)/		(c) 11	03	(d) 79700	
24.	Hardı (a) an	ness of steel greatly imp nealing (b) cy	roves anidin	with g	<mark>(c)</mark> no	rmalizing	(d) temper	ing
25.		Work Material		Type of Jo	ining			
	P	Aluminium	1	Submerge	d Arc	Welding		
	Q	Die Steel	2	Soldering				
	R	Copper Wire	3	Thermit V	Veldin	g		
		Titanium Sheet	4	Atomic H	ydrog	en Welding		
	1		6	Laser Bea	$\frac{1}{m We}$			
	(a) P-2 O-5 R-1 S-3 (b) P-6 O-3 R-4 S-4							
	(a) 1^{-2} , 0^{-3} , 1^{-1} , 3^{-3} (b) 1^{-6} , 0^{-3} , 1^{-4} , 3^{-4} (c) 1^{-6} , 0^{-1} , 1^{-6} , 1^{-2} , 1^{-6} , 1^{-							
	(-) -				(-)-	o, c ., <u>-</u> , <u>-</u> , <u>o</u>	-	
26.	For a	perfect gas						
		List A	4			List B		
	Р	Isobaric thermal expansion	nsion o	coefficient	1	0		
	Q	Isothermal compressi	olity		2	∞		
	R	Isentropic compressib	ility		3	1/v		
	S	Joule Thomson Coeff	icient		4	1/T		
					5	1/p		
					6	1/⊡p		
	(a) P	(a) P-4, Q-2,R-3,S-6				-3,Q-5,R-4,S-1		
	(c) P	(c) P-2,Q-4,R-1,S-5				-4,Q-5,R-6,S-1		
	. 370	INDIAN	SPACE	E RESEAR(CH OF	RGANISATION		3 of 9

20. The diameter of suction side of a reciprocating compressor compared to its delivery side is

(b) equal

(d) varies according to capacity

इसरो ंडन्च

27.	If a mass of moist air i	in an airtight vessel is h	eated to a higher tempe	rature, then
	(a) Specific humidity	of air increases	(b) Specific humidity	of air decreases
	(c) Relative humidity	of air increases	(d) Relative humidity	of air decreases
28.	Threaded bolts of A a load. If the elastic str diameter of bolt A is 1	and B of same materia ain energy stored in b .2mm, then mean diame	l and length are subjec olt A is 4 times that o eter of bolt B is	ted to identical tensile f bolt B and the mean
	(a) 16	(b) 24	(c) 36	(d) 48
29.	In a condenser of a cooling water enters difference (I MTD) of	power plant, the steam at 303 K and leaves a the condenser is	n condenses at a temp at 318 K. The logarith	erature of 333 K. The mic mean temperature
	(a) $16.2^{\circ}C$	(b) 21.6 ^o C	(c) 30 ⁰ C	(d) 37.5 ⁰ C
30.	The shear strength of blank of 100 mm dian	a sheet metal is 300 M neter from a 1.5mm thic	Ipa. The blanking force ck sheet is	e required to produce a
	(a) 45 kN	(b) 70 kN	(c) 141 kN	(d) 350 kN
31.	A heat engine is supp Thermal efficiency and (a) 34.0%, 11.0	plied heat at the rate of d heat rejection in kW (b) 28.3%, 10.0	of 1700 kJ/min and giv of heat engine is (c) 31.76%, 19.3 <mark>3</mark>	ves an output of 9 kW. (d) 32.3, 9.83
32.	When we have combi	ned free and forced con	vection, Gr/Re ² is	
	(a) greater than 1		(d) equal to Peclet N	umber
	(c) annost equal to 1		(d) equal to receive in	
33.	A refrigerator and h refrigerator is 4, COP	neat pump operate be of heat pump would be	tween the same tempe	erature limits. COP of
	(a) 3	(b) 5	(c) 4	(d) data not adequate
34.	A carnot refrigerator 233 K. Its higher oper	requires 1.25 kW per t rating temperature of th	on of refrigeration to m	aintain a temperature of
	(a) 318 K	(b) 313 K	(c) 315 K	(d) 316 K
35.	The work input to air	compressor is minimu	m if the compression la	w followed is
	(a) isentropic	(b) PV=C	(c) PV $^{1.2}$ = C	(d) PV $^{1.35} = C$
36.	Operating pressures application are	of the refrigerants at t	the evaporator in the a	scending order for any
	(a) R11, R12, R717, 1	R22	(b) R22,R717,R12,R	.11
	(c) R11,R12,R22,R7	17	(d) R717,R22,R11,R	.12
~		IDIAN SPACE RESEA	RCH ORGANISATION	4 of 9
	11.			

·····

37.	For vapour compress (a) steel	sion system using R717 ((b) copper	the material of pipe is (c) Brass	(d) Aluminium
38.	Air at DBT of 308 k at 298 K. The proces (a) cooling and de hu (c) cooling and hum	X and DPT of 293 K pas as would be amidification idification	ses through a cooling co (b) sensible cooling (d) cannot predict	oil which is maintained
39.	Room sensible hea Sensible heat factor	t loss is 30000kJ/min is	and room latent heat	loss is 20000 kJ/min.
	(a) -0.6	(b) 0.6	(c) 0.3	(d) 3
40.	Domestic refrigerate expansion device (a) Manually operate (c) expansion valve	or working on vapour o	compression cycle uses (b) thermostatic valve (d) capillary tube	the following type of
41.	An incompressible : location is 1mm for then the boundary la (a) 4	fluid flows over a flat p Reynolds Number of 10 over thickness at that loca (b) 0.25	late and its boundary lay 000. If the velocity is inc ation in mm will be (c) 0.5	yer thickness at certain reased by a factor of 4, (d) 2
42.	A room contains 3 temperature in the re kPa. Relative humic (a) 67%	35 kg of dry air and oom is 100kPa and 298 1 lity of air in that room is (b) 55%	0.5 kg of water vapou K. Saturation pressure of (c) 83%	ar. Total pressure and f water at 298 K is 3.17 (d) 71%
43.	An ideal brayton of minimum and maxi fluid is 1.4. Appro- expansion respectiv (a) 500 and 900	cycle operating between mum temperature of 300 oximate final temperature ely are (b) 900 and 500	the pressure limits of and 1500 K. Ratio of s res in Kelvin at the er (c) 500 and 500	1 bar and 6 bar, has pecific heat of working ad of compression and (d) 900 and 900
44.	Condition of perfec (a) -273° C	t Vacuum is attained at t (b) 0 ⁰ C	emperature of (c) 273 K	(d) can't be attained.
45.	Two identical ball	bearings P and Q are op	perating at loads 15 kN	and 45 kN respectively.
	(a) 81	(b) 27	(c) 9	(d) 3

रूसरो जन्म

INDIAN SPACE RESEARCH ORGANISATION

5 of 9

and the summer of deverses of the second sec

46.	. if a certain amount of dry ice is mixed with same amount of water at 80°C, then the fir temperature of the mixture is					
	(a) 0^{0} C	(b) $80^{\circ}C$	(c) 40° C	(d) 60 ⁰ C		
47.	The leaks in a refriger	ation system using Freo	n is detected using			
	(a) smell	(b) halide torch	(c) sulphur sticks	(d) using reagents		
48.	Presence of moisture i	n the refrigerant affects	the working of			
	(a) condenser	(b) evaporator	(c) expansion valve	(d) compressor		
49.	In SI unit, one ton of r	efrigeration is				
	(a) 210 kJ/min	(b) 21 kJ/min	(c) 420 kJ/min	(d) 840 kJ/min		
50.	On the pressure – ent horizontal line becaus	halpy diagram, condens e the process	sation and de-superheat	ing is represented by a		
	(a) involves no change	e in volume	(b) takes place consta	int temperature		
	(c) takes place at coll	stant pressure	(u) takes place at constant entropy			
51.	Generation of heating	at one junction and coo	oling at other by passing	g direct current through		
	(a) Seebeck effect	(b) Joule effect	(c) Peltier effect	(d) Thomson effect		
52.	Power consumption o	f centrifugal fans varies	with speed (N) and dia	meter (D) as		
	(a) N^3D^4	(b) N ⁵ D ³	(c) N^2D^5	(d) $N^{3}D^{5}$		
53.	Sol-air temperature for solar radiation of 260 (a) 45.2 ⁰ C	or a wall of absorptivity W/sqm, outside heat tra (b) 48 ⁰ C	v 0.9, exposed to ambien ansfer coefficient 23 W (c) 41.2°C	nt temperature of 35 ⁰ C, //sqm K is (d) 47.2 ⁰ C		
54.	The recovery factor in	n flow of gases is a fund	ction of			
	(a) Reynolds Number		(b) Prandtl Number			
	(c) Peclet Number	× /	(d) Rayleigh Number			
55.	Adiabatic wall tempe	rature is				
	(a) equal to stagnation	n temperature	(b) greater than stagn	ation temperature		
	(c) less than stagnation	on temperature	(d) the temperature of	f adiabatic surface		
56.	A composite slab has 2k. If each layer has t (a) 3k	two layers of different the same thickness, the (b) N ⁵ D ³	t materials having thern equivalent thermal cond (c) 3/2k	nal conductivities k and luctivity of the slab is (d) 4k/3		

इसरो ांडल्व

INDIAN SPACE RESEARCH ORGANISATION

6 of 9

·····

REFI	RIGERATION & AIR CONDIT	IONIN	NG - 2014		SET - A		
57.	When a liquid flows throug known as	gh a t	ube with s	subcooled or saturat	ed boiling the process is		
	(a) Pool boiling			(b) bulk boiling			
	(c) Convection boiling			(d) forced convecti	on boiling		
58.	For filmwise condensation, horizontal or vertical, when	the he the rat	eat transfer tio of lengtl	coefficient will be to diameter is	equal whether the tube is		
	(a) 1.3 (b) 2	.87		(c)0.77	(d) >10		
59.	Insulated tip temperature of	a recta	angular lon	gitudinal fin will be	equal to		
	(a) $\theta_0 \tanh ml$ (b) θ	_o /sinh	ml	(c) (θ_0 tanh ml)/m	$1 (d) \theta_o / \cosh m l$		
60.	The characteristic length con	nputir	ng Grashof	number in the case o	of a horizontal cylinder is		
	(a) diameter of the cylinder			(b) length of the cy	vlinder 🥿		
	(c) radius of the cylinder			(d) perimeter of the	e cylinder		
61.	In liquid metal heat transfer of	for a t	fluid flowir	ig through a tube, Ni	usselt number is a function		
	(a) Reynold Number			(b) Prandtl Numbe	or		
	(c) Peclet Number			(d) Reynolds and I	Peclet Number		
	. ,						
62.	Absorptivity of the grey boo	ły					
	(a) varies with temperature			0			
	(b) varies with wavelength (of the	incident ray				
	(c) varies with wavelength and temperature of t			f the incident ray			
	(d) does not vary with wave	length	and tempe	rature of the inciden	e incident ray		
		- 1	0				
63.	Gases have poor	1					
	(a) transmissivity (b) a	losorp	divity	(c) reflectivity	(d) emissivity		
64.	Intensity of solar radiation i	n kW	sqm is abo	ut			
	(a) 1 (b) 3	3	1	(c) 5	(d) 2		
65	Match the following:						
05.	Match the following:						
	A Stanton Number	1	Surface T	ension			
	B Mach Number	2	Mass Tra	nsfer			
	C Weber Number	3	Forced C	onvection			
	D Schmidt Number	4	Compres	siblity			
	(a) A-4, B-3, C-2, D-1			(b) A-3, B-4, C-1	, D-2		
	(c) A-1, B-2, C-3, D-4			(d) A-2, B-3, C-4	, D-1		

--इसरो ांडल्ड

INDIAN SPACE RESEARCH ORGANISATION

7 of 9

REF	RIGERATION & AIR CO	ONDITIONING - 2014		SET	-A
66.	In MLT θ system, the o (a) ML ⁻¹ T ⁻¹ θ ⁻³	dimension of thermal c (b) MLT ⁻¹ θ ⁻¹	onductivity is (c) MLT ⁻³ θ ⁻¹	(d) MLT ⁻² θ ⁻¹	
67.	For infinite parallel	lanes with emissivities 1 to surface 2 is about (b) 0.6	0.4 and 0.2, the interch (c) 0.2	ange view facto	or for a
68.	A chromel – alumel t of a gas stream for wh taken after (specific h (a) 1 second	hermocouple of diame nich h= 600 W/sqm K heat = 400 J/kg K, Dens (b) 4 seconds	ter 0.7mm is used to m . Acceptable reading of sity = 8600 kg/cum) (c) 2 seconds	easure the temp the temperature (d) 3 seconds	erature can be
69.	On a hot summer day, of water is directed on taken in hours to coo (Thermal diffusivity = (a) 1.2	, surface of the concret n the highway so that the ol the concrete to 318 = 1.77E-03 m ² /h) (b) 1.4	e highway may reach 32 he surface is suddenly le K to a depth of 5 cm (c) 1.8	28 K. Suppose a owered to 308 H below the sur (d) 1.6	stream K. Time face is:
70.	Hot surface at temper a surrounding of 375 (a) 14.6	ature 400 K having em K. Its radiation heat tra (b) 7.3	nissivity of 0.5 dissipate nsfer coefficient (W/sqr (c) 1.83	s heat by radiat n K) is (d) 9.4	ion into
71.	Hot steel sphere of between the sphere ar Take $k_{steel} = 50 \text{ W/m}$ (a) 0.04	diameter 40mm is implied oil is 300 W/sqm K K and $k_{oil} = 0.2$ W/m b (b) 0.12	mersed in oil. If the h , then Biot Number is: K (c) 10	eat transfer coe (d) 0.24	efficient
72	A metallic surface is intensity occurs	maintained at 1000 k	X, the wavelength at whether $X = 0.0000$	nich maximum	spectral
	(a) 289.8 µm	(b) 28.98 µm	(C) 0.2898 μm	(d) 0.002898	mm
73.	Air at 293 K is flowing wide and is maintai (Take $v= 16.768E-61$ (a) 33 W	ng with velocity of 3m ned at 330 K. Average n ² /s, Pr =0.7, k=0.027 (b) 37 W	/s over a heated flat squ e heat loss from the pla W/m K) (c) 45 W	are plate. Plate te due to conve (d) 41 W	is 0.3 m ection is

74. Two fluids A and B exchange heat in counterflow heat exchanger. Fluid A enters at 700 K and fluid B enters at 300 K. Mass flow rate of A & B is 1 kg/s. Specific heat of fluid A and B is 1000 J/kg K and 4000 J/kg K. Net Effectiveness of heat exchange is 75 %. Exit temperature of Fluid B is

(a) 380 K (b) 385 K (c) 375 K (d) 370 K

INDIAN SPACE RESEARCH ORGANISATION

8 of 9

SET - A

75. If

7

f	the following equations are consistent, then value of k is	

4x-3y+1=0
kx-8y+10=0
x+y-5=0
(a) -6 (b) 7 (c) 6 (d) -7
76. If
$$\phi$$
 and ϕ^2 are cube roots of unity, then $(2-\phi+2\phi^2)(2+2\phi-\phi^2)$ is
(a) 0 (b) -9 (c) 8 (d) 9
77. Area of the ellipse $\frac{y^2}{\sigma^2} + \frac{y^2}{\sigma^2} = 1$
(a) ab (b) a/b (c) π ab (d) ab/π
78. find $\lim_{x\to 0} \frac{1-c\phi z}{z^2}$
(a) 0 (b) 1/2 (c) -1/2 (d) 1
79. Equation of the plane parallel to the x axis and passes through the point (4,6,2) and (4, -5, 3)
(a) y+11z+28=0 (b) y-11z+28=0
(c) y+11z-28=0 (d) y-11z+28=0
(c) y+11z-28=0 (d) y-11z-28=0
80. \vec{a} and \vec{b} are unit vectors such that $2\vec{a} - 4\vec{b}$ and $10\vec{a} + 8\vec{b}$ are perpendicular to each other.
Angle between the vectors \vec{a} and \vec{b} is
(a) 90° (b) 120° (c) 110° (d) 100°

(d) 100**°** (a) 90°